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Abstract

In the English language, certain letters (and even sequences of let-
ters) are more common than others. From a database of all English
words, we use Markov chains to construct frequency tables and prob-
ability transition matrices for the behavior of the words of the English
language English words. Using these tools, we construct “random
words” that are likely to be words, but are not. Our analysis of differ-
ent methods to produce random words, using variables such as word
length, method of transition selection, and state size, reveals which
random words are qualitatively most similar to true English words.

1 Introduction

1.1 Markov Processes

To understand Markov Processes, we first introduce the broader category of
stochastic processes with a formal definition below.

Definition 1. [1] Suppose (Ω,F ,P) is a probability space, and that I ⊂ R is
of infinite cardinality. Suppose further that for each α ∈ I, there is a random
variable Xα : Ω → R defined on (Ω,F ,P). The function X : I × Ω → R
defined by X(α, ω) = Xα(ω) is called a stochastic process with indexing set
I, and is written X = {Xα, α ∈ I}.

In simpler terms, a stochastic process is a function X which sends a pair
to a real number, where the first element of the pair “chooses” the function
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Xα from the sample space, Ω, to R. For the sake of intuition, it may be useful
to note that a stochastic process very loosely resembles a group action, in
the sense that the set I is acting on Ω.

We often interpret the index set I as a set of times, so that Xα(ω) is the
state of a system at time α. This is the case, for example, in the case of
random walks. In fact, a random walk is an example of a Markov Process,
which we define below.

Definition 2. [3] A stochastic process has the Markov Property if the con-
ditional probability distribution of future states of the process depends only
on the present state. If a stochastic process has the Markov Property, we
call it a Markov Process.

A Markov Process is a Markov Chain when either the state space or index
set of the process is discrete. In this paper we restrict to Markov Chains,
because the set of positions of a letter or string of letters in an n-letter word
is discrete. There are many continuous Markov Chains of significant interest
in the literature, however, with Brownian motion being a famous example.

1.2 The Transition Probability Matrix

Given a stochastic process with state space S = 0, . . . , D, we define the
transition probability Tmn at α to be the likelihood of moving from state m
to state n at time α. That is, Tmn = Pr(n|m).

Definition 3. With S,D, T , m, and n as above, the Transition Probability
Matrix is the (D + 1)× (D + 1) matrix whose (i, j)th entry is Tmn.

There are many powerful results in the literature regarding the Transi-
tion Probability Matrix. Among the most widely applied is the Chapman-
Kolmogorov Equation, which allows us to draw conclusions about a stochastic
process at a given time using knowledge about the state of the process at
two preceding times.

Theorem 1. (Chapman-Kolmogorov Equation [6]) Let X = [X0, X1, . . .] be
a Markov chain with transition matrix P . For any α ∈ N, P (α)(m,n) =
Pr(Xα = n|X0 = m). Then for any α ≥ 0 and β ≥ 0,

P (β+α)(m,n) =
∑
k

P (β)(n, k)P (α)(k,m).
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In the context of language analysis, this could reveal insight like the
likelihood of a word beginning with ‘a’ which has ‘b’ as its third letter and
‘c’ as its fourth having the letter ‘d’ as its seventh. Already, we’ve obtained
intricate information using fundamental known infrastructure surrounding
the Transition Probability Matrix.

It is worth noting that the row sums and column sums of the transition
probability matrix are all 1, by basic principles of probability. As a result,
anything which is true for row-, column-, or doubly stochastic matrices also
holds for transition probability matrices. For example, solely because the
transition probability matrix is square and row-stochastic, we have that its
the largest eigenvalue is 1 ([2]). In the following subsection, we explore more
advanced results about Markov Processes and the Transition Probability
Matrix.

1.3 Advanced Properties of the Transition Probability
Matrix and Associated Markov Chain

Two central properties in the study of Markov Chains and the Transition
Probability Matrix are reducibility and recurrence. Following the convention
of [5], we say a Markov chain is irreducible if it has only one communcating
class, and is reducible otherwise. We define a communicating class formally
below:

Definition 4. We say two states s1, s2 of our Markov Chain communicate if
there is some pair of finite non-negative integers k, j such that it is possible
to get from s1 to s2 in k steps and from s2 to s1 in j steps. A communicating
class is a set of states such that each state communicates with every other
state.

Definition 5. A Markov chain is irreducible if every state communicates
with every other state.

In terms of the corresponding graph whose weighted adjacency matrix
is the Transition Probability Matrix, this is the condition of being strongly
connected:

Definition 6. A digraph is strongly connected if every vertex can be reached
by a directed path beginning at any other vertex.
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It is well-known that whether an n-vertex digraph is strongly connected
can be tested using its adjacency matrix A. The digraph is strongly connected
if and only if all entries of B = A + A2 + . . . + An are nonzero. From this
we obtain that a Markov Chain with n states is irreducible if and only if
T 1 + T 2 + . . .+ T n has only nonzero entries.

For words of short length, at least, this is easy to check computationally.
In fact, we construct the letter-to-letter transition matrices in Section 2.
Determining whether a Markov chain is irreducible enables us to access deep
results about the stationary distribution, which we define below.

Definition 7. A stationary distribution of a Markov Chain is some vector π
such that for T the Transition Probability Matrix, π⊤ = π⊤T .

A highly significant parameter, the stationary distribution reveals the
long-term behavior of a Markov chain. In context, this would tell us what
the distribution of letters would be arbitrarily far from the starting letter.
The following result combined with our proof that our small-state transition
probability matrices are irreducible gives that we can completely determine
the long-range distribution.

Theorem 2. [5] A Markov chain is irreducible if and only if it has a unique
stationary distribution.

Not only does an irreducible Markov chain uniquely determine its sta-
tionary distribution; in the long run, the probability distributions converge
to the stationary distribution:

Theorem 3. (Ergodic Theorem for Markov Chains, [4])
Given an irreducible Markov chain, as the number of steps tends to in-

finity, the distribution at each state converges to the stationary distribution.

This result implies that after arbitrarily many steps, the letter distri-
bution “forgets” about the initial condition: the starting letter. From the
Perron-Frobenius theorem for Markov Chains, we also have a sense of how
the stationary distribution looks, along with information about the spectral
radius of the transition probability matrix.

Theorem 4. (Perron-Frobenius for Irreducible Markov Chains, [5]) If T is
the transition matrix of an irreducible Markov chain, then

• λ = 1 is guaranteed to be an eigenvalue and a simple eigenvalue
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• All other eigenvalues of T have |λ| ≤ 1, such that the spectral radius of
T is 1.

• Upon suitable normalization, the eigenvalue λ = 1 has a left eigenvector
equal to the unique stationary distribution π = (π1, π2, . . . , πN)

⊤ and a
right eigenvector equal to η = (1, 1, . . . , 1)⊤.

Theorem 5. (Perron-Frobenius for Reducible Markov Chains, [5]) If T is
the transition matrix of a reducible Markov chain, then

• λ = 1 is guaranteed to be an eigenvalue

• The number of linearly independent eigenvectors with λ = 1 is equal to
the number r of recurrent communicating classes in the Markov chain.

• All other eigenvalues have |λ| ≤ 1, such that the spectral radius of T is
1.

• There are many choices of left and right eigenvectors for λ = 1. It
is possible to choose πk and ηk as a pair of left and right eigenvectors
for each of the recurrent communicating classes, where πk is the unique
stationary distribution associated with each class and ηk is an indicator
vector with entry 1 for states in the class and zeros elsewhere.

The spectral theory of the transition probability matrix is rich, and we
refrain from including further detail here. Broadly, the results given above
illuminate the value of the transition probability matrix and corresponding
Markov chain. Not only do these objects encode rich information about
complex systems, they allow us to generate new knowledge, predicting future
states of the system. In the following section, we focus our attention on the
transition probability matrices associated with words in the English language.

2 Methods

We are given an initial procedure ENG() which generates a list of lists of all
English words of length 1 through 28 (with “antidisestablishmentarianism”
being the longest word in the English language.) Our task is to perform
statistical analysis of all words in this collection, specifically by studying the
frequency with which a transition from letter ‘α’ to letter ‘β’ happens. To do
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this, we construct a 28x28 transition matrix representing all possible transi-
tions between the 26 letters of the English alphabet (as well as START and
END states.) Then we produce pseudo-words by linking together combina-
tions of letters which occur with high frequency, but do not produce real
English words.

2.1 Transition Matrix

In order to utilize a Markov chain, we must construct a transition matrix
from the database of all English words. The procedure MakeTrM(k,stSize)
outputs the transition matrix constructed by examining all words of length
≥ k with a state size of stSize (whose default is 1).

We begin with a state size of 1, which means that we consider only tran-
sitions between single letters of a word (for example, the transition from ‘c’
to ‘a’ in the word “cat.”) The transition matrix is therefore a 28x28 matrix
where the entry in row i and column j corresponds to the transition from
‘i ’ to ‘j ’.

The first row and column correspond to the START state (i.e. column i

in row 1 counts the number of words starting with ‘i ’) and the last is for the
END state (the same idea, but for words ending in ‘i.’) The entries of the
transition matrix are determined by looping over the letters of each word in
ENG() and incrementing the appropriate matrix entry based upon the letters
of the transition. We simultaneously tally the total number of transitions
considered by the loop, and we then divide the entire matrix by this total
count so that each matrix entry is a relative frequency rather than a raw
count.

2.2 More Transition Matrices

For an alphabet of size n, ourm-state transition matrix encodes the transition
probability from a state (a1, . . . , am) to another (a2, . . . , am, b), where each
coordinate is an element of L := {0, . . . , n+1} and with a further restriction:
for each state, only the first coordinate may be 0 and only the last coordinate
may be n+1. In this convention, 0 denotes our START state and n+1 denotes
our END state.

We encoded the m-state transition matrix into a table, which is indexed
by a state (a1, . . . , am) and a letter b – since all transitions will be of the form
(a1, . . . , am) → (a2, . . . , am, b).
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2.3 Likely English Words

With the transition matrix in hand, we are able to construct “words” that
have a high likelihood of being English words, statistically speaking, but are
not actual words. The procedure generateWord(K,A) inputs a word length
K and a starting letter A (formatted as a lowercase letter without parentheses
or quotes). Note that the transition matrix utilized by this procedure is the
result of MakeTrM(K,1).

Starting with A, the procedure identifies the letter which most commonly
follows A by selecting the maximum entry of the row corresponding to A in
the transition matrix. We then repeat this process to find the most common
successor of our newly selected letter, and so on until a word of length K has
been produced. Lastly, we return the decoy word if it is not in the English
word collection ENG(), otherwise the algorithm returns fail. Some example
calls and outputs are as follows:

> generateWord(5,c);

[c, o, n, g, e]

> generateWord(7,o);

[o, n, g, e, r, e, r]

> generateWord(4,q);

[q, u, n, g]

However, this generation procedure is rather deterministic as any given
combination of (K,A) will produce one particular output. To better study
how the statistics of ENG() may produce non-English words, we may want to
produce a number of different words, perhaps by considering more than one
possible successor. Hence, we modify our existing code to produce two func-
tions generateWordRandom(K,A,R) and generateWordRandWted(K,A,R).

In each of these new procedures, we still produce a word of length K with
starting letter A. But now, we consider the R most common successors of
the current letter at each step, where R is some number between 2 and 25
(note that R = 1 produces the same result as generateWord.) The procedure
generateWordRandom(K,A,R) selects one of the Rmost common successors at
random with equal probability, meanwhile generateWordRandWted(K,A,R)

selects one of the R most common successors based on their weighted frequen-
cies.

For example, in words of length 5 or more, the transition matrix entry
corresponding to [b,c] is 2000

34903
while the entry corresponding to [b,d] is
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1383
34903

. Then we would expect the former procedure to select either ‘c’ or ‘d ’
as a successor of ‘b’ with equal probability, but the latter procedure should
select ‘c’ about 1.5x as often as ‘d ’. We note that the rational numbers
representing each of the R possible successors will not necessarily sum to 1, so
if we were to check the frequency that each letter is selected from R successors,
such a frequency would not necessarily be equal to that transition’s entry in
the transition matrix.

> generateWordRandom(5,c,1);

[c, o, n, g, e]

> generateWordRandom(5,c,3);

[c, a, n, t, e]

> generateWordRandWted(5,c,3);

[c, o, n, e, r]

Some output words, particularly those produced from large R, appear to
the human eye to be further from real English words, and often were unpro-
nounceable by typical English linguistic rules. For example, one possible ex-
ecution of generateWordRandom(5,a,4) produces [a,t,r,i,s], meanwhile
generateWordRandom(5,a,10) produces [a,m,s,p,p]. This effect is some-
what mitigated by the weighted random selector since the more common (and
thus more pronounceable) letter combinations appear with higher frequency.
For example, generateWordRandWted(5,a,4) produced [a,l,e,s,t] while
generateWordRandWted(5,a,10) produced [a,r,o,o,n,t].

Another method we used to combat the production of unpronounceable
words was altering the state size used to define the transition matrix. The
details for this construction are outlined in Section 2.2. The new procedure,
generateWordSt(M), only has input M for the state-size used in the transi-
tion matrix. It generates the first M − 1 letters as follows: use the k-state
transition matrix to generate the k-th letter lk according to the transition
probabilities of (0, l1, . . . , lk−1). To generate the first letter, for instance, we
check the transition probabilities for our START state.

Unlike previous procedures, we do not prescribe a word length to the
generated word and instead let the word end probabilistically. We list a few
sample outputs below

> generateWordSt(2);

[l, i, s, e, n, t, e]
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> generateWordSt(2);

[t, e, r, s]

> generateWordSt(2);

[h, e, i, n, g, s]

3 Results

With repeated experimentation using the procedures defined in the previous
section, certain patterns emerge. For example, we find that we are more
successful in generating “word-like” words when we consider a smaller set of
possible successors from the likely successors of any letter. We account for
some of these trends and expound on factors affecting them below.

Preliminary observations of certain function calls, particularly utilizing
generateWordRandom and generateWordRandWted with large R, showed pseudo-
words that qualitatively appeared less like real words than pseudo-words
produced with smaller R. For example, generateWordRandom(5,a,4) pro-
duced, in one sample execution, [a,t,r,i,s]. Meanwhile, one sample call
to generateWordRandom(5,a,10) output [a,m,s,p,p]. This makes intu-
itive sense as larger R considers a larger number of possible successors at
each step, and so the produced word may have a larger number of rarer
letter combinations. This effect is somewhat mitigated by the weighted ran-
dom selector since these rarer combinations are selected with much lower
frequency.

However, one drawback of this method is that, with higher frequency, the
same letters appear repeatedly in a word as certain letter combinations create
a sort of ping-pong effect between those high frequency letters. One such ex-
ample is that [t,a,t,a,t] is produced by generateWordRandWted(5,t,5).
Another downside of weighted random successor selection is that the pro-
duced word is more likely to be a real English word, and so the procedure
fails to return a pseudo-word more often than when the successor is selected
at random or deterministically.

Further insight into this repetition can be obtained by considering the
spectral radius of the transition probability matrix. From the Perron-Frobenius
Theorem for Irreducible Markov Chains (see Section 1), we have that the
spectral radius of the transition probability matrix is 1. When the spectral
radius is close to 1, the mixing time, or time to reach a steady state, is fairly
long. That is, the time it takes for the letter choice likelihood at any posi-
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tion in a word to resemble the stationary distribution is long. It is therefore
unsurprising if not expected that the letter choice may loop, as in the case
of [t,a,t,a,t], Of course, this phenomenon is magnified in cases where the
most likely letter x to follow a given letter y has the property that x is the
most likely letter of follow y.

Regarding the issue of pronounceability, we observed that certain gener-
ated letter sequences are not found in any pre-existing words. We saw this
in [a,m,s,p,p] and in the following output:

> generateWordRandWted(6,q,20);

[q,u,m,i,t,a]

Naturally, there are zero occurrences of the substring [q,u,m] in our dictio-
nary of existing English words. To remedy this, we considered using larger
state sizes through generateWordSt. For state size M , we can be certain
that the procedure will not generate any words which have substrings of
length M + 1 which are “illegal” in the English language. As an example,
we can be sure that for state size at least 2, there will be no words generated
which contain [q,u,m] as a substring.

There are several theoretical downsides to consider, though. The first is
that larger state sizes shrink the sample size used to approximate the “true”
transition probabilities in the language. The second is that for large state
sizes, we can expect that our words will deviate from existing words much
less; this is partly due to the first point, but also due to the fact that there is
a definite upper bound on the length of typical English words. If one picks
large state size M then many of the positive transition entries will simply be
pre-existing words. In the next sample outputs, we can see some evidence
for this analysis.

> generateWordSt(2);

[c, a, p, p, e, c, i, d, e]

> generateWordSt(3);

[q, u, o, t, a, t, i, c]

> generateWordSt(4);

[d, i, s, r, u, p, t, u, r, e, s]

There was also a concern that generated words were too long, but running
large samples of generateWordSt(2) and generateWordSt(3) indicates that
the mean generated word length lies in the interval (8, 10), very roughly
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estimated to be around 9. For reference, the average word length in our data
is around 8.53.

Word generation by our procedures is not entirely satisfactory, however.
Our framework does not take into account that certain word states are only
likely when they occur earlier or later in a word. Letter states beginning with
“o” (15-th letter in the alphabet) are notorious for this. Below we include
some strange sample outputs

> generateWordSt(2,15);

[o,u,s]

> generateWordSt(2,15);

[o,c,k,e,r,r,a,g,n,i,c,t,i,o,n,s,e]

In the first output, we can speculate that this is a result of the very common
“-ous” prefix. For the second output, we see “ock” which is seen most often
as a suffix (block, rock, sock, etc.). We speculate that a Markov Chain which
includes information on both letter states and letter location may be better
suited for word generation.

4 Conclusion

Through our original transition probability matrix and the modified con-
structions which grew from it, we constructed and analyzed words which
mimic true English words. We found that choosing from a weighted list of
the most likely possible successors at each step lead to words which mimic
true words well. That is, implementing generateWordRandWted successfully
gives pseudo-words, as desired. This is especially true when the set of possible
successors (size R) is kept large. However, for the unweighted implementa-
tion, generateWordRand, smaller sets of possible successors yield words of
higher quality.

Future work could lead to even more efficient and nuanced generation of
pseudo-words. One possible avenue to explore is generating a set of transi-
tion probability matrices which depend on the position of the starting letter
in the word. In using the same transition probability matrix to choose the
next letter at each position in a word, we overlook some of the more subtle
structure of the English language. That is, we assume the transition prob-
abilities are the same whether we’re at the initial letter or the middle of a
word, or the end. It may be the case, however, that the transition from ‘n’
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to ‘d ’, for example, is more likely to occur at the end of a word than in the
beginning.
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